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Preface

This book is for scientists and engineers interested in data-driven and machine learn-

ing methods for fluid mechanics. Big data and machine learning are driving profound

technological progress across nearly every industry, and they are rapidly shaping fluid

mechanics’ research. This revolution is driven by the ever-increasing amount of high-

quality data, provided by rapidly improving experimental and numerical capabilities.

Machine learning extracts knowledge from data without the need for first principles

and introduces a new paradigm: use data to discover, rather than validate, new hy-

potheses and models. This revolution brings challenges and opportunities.

Data driven methods are an essential part of the methodological portfolio of fluid

dynamicists, motivating students and practitioners to gathering practical knowledge

from a diverse range of disciplines. These fields include computer science, statistics,

optimization, signal processing, pattern recognition, nonlinear dynamics, and control.

Fluid mechanics is historically a big data field and offers a fertile ground to develop

and apply data-driven methods, while also providing valuable shortcuts, constraints,

and interpretations based on its powerful connections to first principles physics. Thus,

hybrid approaches that leverage both data-driven methods and first principles ap-

proaches, are the focus of active and exciting research. This book presents an overview

and a pedagogical treatment of some of the data-driven and machine learning tools that

are leading research advancements in model-order reduction, system identification,

flow control, and data-driven turbulence closures.

About the Book and the VKI Lecture Series

This book originated from a one-week course from the von Karman Institute (VKI)

for fluid dynamics (https://www.vki.ac.be/). The course was hosted by the Uni-

versité libre de Bruxelles (ULB) from 24 to 28 February 2020, in the classic VKI lec-

ture series format. These are one-week courses on specialized topics, selected by the

VKI faculty and typically organized 8-12 times per year. These courses have gained a

worldwide recognition and are among the most influential and distinguished European

teaching forums, where pioneers in fluid mechanics have been training young talents

for many decades.

The lecture series was co-organized by Miguel A. Mendez from the von Karman

Institute (Belgium), Alessandro Parente from the Université libre de Bruxelles (Bel-

https://www.vki.ac.be/
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gium), Andrea Ianiro from Universidad Carlos III de Madrid (Spain), Bernd R. Noack

from Harbin Institute of Technology, Shenzhen (China) and TU Berlin (Germany) and

Steven L. Brunton from University of Washington (US).

Online Material

The book is supported by supplementary material, including codes, experimental and

numerical data, exercises, and the video lectures recorded from the course. All mate-

rial is hosted on the course website:

https://www.datadrivenfluidmechanics.com/

The supplementary material covers more exercises, tutorials, and practicalities than

could be included in this book while preserving its conciseness. Readers interested in

gaining a working knowledge on the subject are encouraged and expected to down-

load this material, study it along with the book, and test it on their own data. The

large repertoire of computing tools implemented, together with the relevant datasets

provided, offer a unique opportunity to learn by practicing with real experimental and

numerical data.

The Audience

The book is intended for anyone interested in the use of data-driven methods for fluid

mechanics. We believe that the book provides a unique balance between introductory

material, practical hands-on tutorials, and state-of-the-art research. While keeping the

approach pedagogical, the reader is exposed to topics at the frontiers of fluid mechan-

ics research. Therefore, the book could be used to complement or support classes on

data-driven science, applied mathematics, scientific computing, and fluid mechanics,

as well as to serve as a reference for engineers and scientists working in these fields.

Basic knowledge of data processing, numerical methods, and fluid mechanics is as-

sumed.

The Book’s Roadmap

Like the course from which it originates, this book results from the contribution of

many authors. The use of machine learning methods in fluid mechanics is in its early

days, and a large team of lecturers allowed the course attendees to learn from the

expertise and perspectives of leading scientists in different fields.

Here we provide a roadmap of the book to guide the reader through its structure

and link all the chapters into a coherent narrative. The book chapters can be clustered

into six interconnected parts, slightly adapted from the VKI lecture series.

https://www.datadrivenfluidmechanics.com/
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Part I: Motivation. This part includes the first three chapters, which introduce the

motivation for data-driven techniques from three perspectives.

Chapter 1, by B.R. Noack and coauthors, opens with a tour de force on machine

learning tools for dimensionality reduction and flow control. These techniques are

introduced to analyze, model, and control the well-known cylinder wake problem,

building confidence and intuition about the challenges and opportunities for machine

learning in fluid mechanics. Chapter 2, by J. Jiménez, takes a step back and gives

both a historical and a data-science perspective. Most of the dimensionality reduc-

tion techniques presented in this book have been developed to identify patterns in the

data, known as coherent structures in turbulent flows. But what are coherent struc-

tures? This question is addressed by discussing the relationship between data analysis

and conceptual modelling and the extent to which artificial intelligence can contribute

to these two aspects of the scientific method. Chapter 3, by S. Brunton, gives an

overview of how machine learning tools are entering fluid mechanics. The chapter

provides a short introduction to machine learning, its categories (e.g. supervised ver-

sus unsupervised learning), its subfields (regression and classification, dimensionality

reduction and clustering) and the problems in fluid mechanics that can be addressed

by these methods (e.g. feature extraction, turbulence modelling and flow control). This

chapter contains a broad literature review, highlights the key challenges of the field,

and gives perspectives for the future.

Part II: Methods from Signal Processing. This part brings the reader back to

classic tools from signal processing, usually covered in curricula crossed by experi-

mental fluid dynamicists, although with a large variety of depth. This part of the book

is motivated by two reasons. First, tools from signal processing are, and will likely

remain, the first ‘off-the shelf’ solutions for many practical problems. Examples in-

clude filtering, time-frequency analysis, and data compression using filter banks or

wavelets, or the use of linear system identification and time series analysis via au-

toregressive methods. The second reason – and this is a central theme of the book –

is that much can be gained by combining machine learning tools with methods from

classic signal processing, as later discussed in Chapter 8. Therefore, Chapter 4, by

M. A. Mendez, reviews the theory of linear time-invariant (LTI) systems along with

their properties and the fundamental transforms used in their analysis: the Laplace,

Fourier, and Z transforms. This chapter draws several parallels with more advanced

techniques. For example, the use of the Laplace transform to reduce ordinary differ-

ential equations (ODEs) to algebraic equations parallels the use of Galerkin meth-

ods to reduce the Navier Stokes equation to a system of ODEs. Similarly, there is a

link between the classical Z-transform and the modern dynamic mode decomposition

(DMD). Chapter 5, by S. Discetti, complements the previous chapter by focusing

on time-frequency analysis. The fundamental Gabor and continuous/discrete Wavelet

transforms are introduced along with the related Heisenberg uncertainty principle and

multiresolution analysis. The methods are illustrated on a time-series obtained from

hot-wire anemometry in a turbulent boundary layer and from flow fields obtained via

numerical simulations.

Part III: Data-Driven Decompositions. This part of the book consists of four
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chapters dedicated to a cornerstone (and rapidly growing sub-field) of fluid mechan-

ics: modal analysis. This part is mostly concerned with methods for linear dimension-

ality reduction, originally introduced to identify, and “objectively” define, coherent

structures in turbulent flows.

Chapter 6, by S. Dawson, is dedicated to the proper orthogonal decomposition

(POD), the first and most popular tool introduced in the fluid mechanics commu-

nity in the 1970s. The chapter reviews the link between POD with the singular value

decomposition (SVD), its essential properties (e.g. optimality, relation to eigenvalue

decomposition, and generalization to weighted inner products), its practical computa-

tion on discrete datasets, and its extension to continuous systems. This chapter closes

with illustrative exercises that guide the reader to practical computation. Chapter 7,

by P. Schmid, is dedicated to the dynamic mode decomposition (DMD), a powerful

alternative to POD introduced by P. Schmid a decade ago. This chapter reviews the

derivation of DMD and its roots in dynamical systems and Koopman operator theory.

The main DMD algorithm is presented along with its “sparsity promoting” variant,

and the chapter is enriched by three applications to experimental and numerical data,

as well as a brief outlook at new extensions and generalizations.

Chapter 8, by M. A. Mendez, presents a generalized framework for deriving, com-

puting, and interpreting any linear decomposition. Modal decompositions are ana-

lyzed in terms of matrix factorization and viewed as a special case of 2D discrete trans-

forms. This framework is used to combine multiresolution analysis via filter banks

with the classic POD, and derive the multiscale POD (mPOD). The mPOD is a recent

decomposition that generalized the energy-based (POD-like) and the frequency-based

(DMD-like) formalism. The chapter includes several exercises and tutorials, allow-

ing the reader to test these decompositions on experimental data. Finally, this part on

modal analysis closes with Chapter 9, by A. Ianiro, with an overview of good prac-

tices and applications of modal analysis. This chapter addresses essential questions on

the statistical convergence of POD, the impact of random noise, and the possibility to

extract phase information about the modes even if the data is not time-resolved. More-

over, the chapter presents interesting applications of the extended POD – in which

decompositions of different datasets are correlated – to experimental and numerical

data.

Part IV: Dynamical Systems. This part of the book consists of four chapters ded-

icated to various aspects of dynamical systems. Chapter 10, by S. Dawson, gives a

brief overview of linear dynamical systems and linear control. This is one of the most

developed disciplines in engineering, with applications across robotics, automation,

aeronautics, and mechanical systems in general. Linear techniques provide a standard

approach for closed-loop control and have been successfully used in fluid flows. This

chapter illustrate the main concepts (state-space representation, controllability and ob-

servability, and optimal control) and tools (root locus, pole placement, PID controllers)

focusing on a specific example from fluid mechanics, namely the stabilization of a

wake flow. An overview of additional control techniques and a brief literature review

for flow control are also provided.

Chapter 11, by S. Brunton, provides an overview of nonlinear dynamical systems.
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The chapter introduces fundamental concepts such as flow maps, attracting sets and

bifurcations, and gives a modern perspective on the field, with its current goals and

open challenges. These include recent advances in the operator-theoretic views that

seek to identify a linear representation of nonlinear systems and identify dynamical

systems from data, further discussed in the following chapter. Chapter 12, also by

S. Brunton, builds on the previous chapter and Part III of the book to introduce sev-

eral advanced topics in model reduction and system identification. The chapter opens

with a review of balanced model reduction goals for linear systems and builds the

required mathematical background and the fundamentals of balanced POD (BPOD).

Linear and nonlinear identification tools are introduced. Among the linear identifi-

cation tools, the chapter presents the eigensystem realization algorithm (ERA) and

the observer Kalman filter identification (OKID). Among the nonlinear identification

tools, the chapter presents the sparse identification of nonlinear dynamics (SINDy)

algorithm, which leverages the LASSO regression from statistics to identify nonlinear

systems from data.

This part closes with Chapter 13, by P. Schmid, providing a modern account of

stability analysis of fluid flows. The chapter begins with a brief review of the clas-

sic definition of stability (e.g., Lyapunov, asymptotic, and exponential stability) and

moves towards a modern formulation of stability as an optimization problem: unstable

modes are those along which the growth of disturbances is maximized. The chapter

introduces a powerful, adjoint-based, iterative method to solve such an optimization

and shows how to recover common stability and receptivity results from the general

framework. Finally, an illustrative application to the problem of tonal noise is given.

Part V: Applications. This part of the book is dedicated to the application of data-

driven and machine learning methods to fluid mechanics.

Chapter 14, by B.R. Noack and co-workers, is dedicated to reduced-order model-

ing. The chapter gives an overview of the classic POD-Galerkin approach, reviewing

the main challenges in closure and stabilization as well as classic applications. It then

moves to emerging cluster-based Markov models and their possible generalization. A

detailed tutorial is also provided to offer the reader hands-on experience with reduced-

order modeling.

Chapter 15, by K. Zdybal and co-workers, focuses on the use of data-driven mod-

els for studying reacting flows. The numerical simulation of these flows is extremely

challenging because of the vast range of scales involved. This chapter gives a broad

overview of how machine learning techniques can help reduce the computational bur-

den. The key challenges of high dimensionality are discussed along with an overview

of dimensionality reduction methods, ranging from classic principal component analy-

sis (PCA) to local PCA, non-negative matrix factorization (NMF), and artificial neural

network (ANN) autoencoders. The application of these tools to reduce dimensionality

in the modelling of transport and chemical reactions is illustrated in a challenging test

case.

Chapter 16, by S. Görtz and co-workers, is dedicated to the application of reduced-

order modelling for multidisciplinary design optimization in aerodynamics. The de-

sign of an aircraft involves thousands of extremely expensive numerical simulations.
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This chapter shows how linear and nonlinear dimensionality reduction tools can help

speed up the process. POD, cluster POD, and Isomaps, combined with nonlinear re-

gression, are discussed and demonstrated in industrially relevant cases such as the

aero/structure optimization of an entire aircraft.

Chapter 17, by B.R. Noack and co-workers, is dedicated to flow control and how

machine learning might revolutionize the field. The chapter gives first an overview of

flow control, its purposes, goals, tools, and strategies. Then, two paradigms for flow

control are introduced and compared. On the one hand, there are model-based ap-

proaches, rooted in first principles and our ability to derive models that predict how a

system responds to inputs. On the other hand, there are model-free approaches rooted

in powerful optimization strategies that can “learn” the best control laws from data, by

simply interacting with the system. Cluster-based control and linear genetic program-

ming are illustrated, and the chapter closes with a tutorial on an illustrative nonlinear

benchmark problem.

Chapter 18, by J. Rabault and A. Kuhnle complements the previous chapter with

an overview of deep reinforcement learning (DRL) for active flow control. Reinforce-

ment learning is one of the three paradigms of machine learning. Contrary to the other

two (supervised and unsupervised learning), a reinforcement learning algorithm starts

with no data and learns through experience, i.e., via trial and error. This framework is

meant to tackle decision-making processes, such as teaching a computer to play chess

or drive a car or, as the authors show, to control a fluid flow. This chapter introduces

the main approaches of reinforcement learning (e.g. Q-learning versus policy gradient

methods), the current research directions, and the recent applications to fluid mechan-

ics problems. Guidelines to practically deploy DRL are given, along with a perspective

for the future of the field.

Part VI: Perspectives. The book closes with Chapter 19, by J. Jiménez, with a

fascinating perspective and important questions for the field. Combined with Chapter

2, this chapter explores how much the progressive synergy between machine learning

and fluid dynamics, fostered by ever increasing computational capabilities, could pro-

mote the ‘automation’ of science and ultimately turn machines into colleagues. This,

as masterfully illustrated with a simple case study, ultimately depends on whether

’blind’ randomized trials can be integrated in the process of formulating hypothesis,

eventually giving computers the ability to ask questions rather than just providing an-

swers.

A note on the Notation

The reader will quickly realize that different chapters have (slightly) different notation.

Among these, the same symbol is sometimes used for different purposes, and different

symbols are sometimes used for the same quantities. This choice is deliberate. First,

the book covers a wide range of disciplines, each with well-established notations.

For example, the symbol u usually denotes the actuation in control theory and the

velocity field in fluid mechanics. In reinforcement learning, the actuation is denoted
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by 0C and called the ‘action’ while the sensor measurement is denoted by BC and called

‘state’ (while it is usually denoted by y in control theory). Resolving these ambiguities

would make it difficult for readers to link the material in this book with the literature

of the various intersected disciplines. Thus, each chapter represents the starting point

towards more advanced and specialized literature, in which a standard notation has

not yet been settled. Keeping the notation as close as possible to the cited literature

helps the reader make essential connections. We hope that the reader will approach

each chapter with the required flexibility, and we welcome comments, corrections and

suggestions to benefit students for the next reprint.
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Université Libre de Bruxelles and Vrije Universiteit Brussels, Belgium

Rabault, Jean

Norwegian Meteorological Institute, Norway



✐

✐

“output” — 2021/4/27 — 18:14 — page xx — #20
✐

✐

✐

✐

✐

✐

xx List of Contributors

University of Oslo, Norway

Ripepi, Matteo

Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR),

Germany

Schmid, Peter

Imperial College London, United Kingdom

Semaan, Richard

Technische Universität Braunschweig, Germany

Sutherland, James C.

University of Utah, USA

Zdybal, Kamila
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